8.2 Area of a Surface of Revolution

In previous sections we computed the volumes of solids. In this section we will compute the area of the surface of a solid of revolution. The surface area problem is between a volume problem and the arc lenth calculation. We will use both of these ideas when finding the surface area.

To start let's consider the function $\mathrm{f}(\mathrm{x})=\mathbf{c} \cdot \mathbf{x}$ on the interval $[\mathrm{a}, \mathrm{b}$], where $0<\mathrm{a}<\mathrm{b}$ and $\mathrm{c}>0$. When this line segment is revolved about the x-axis, it generates a cone with the top sliced off (in other words -a frustum).

Notice that the surface area \boldsymbol{S} is the difference between $\boldsymbol{S}_{\boldsymbol{b}}$ which extends over $[0, b]$ and $\boldsymbol{S}_{\mathrm{a}}$ which extends over [0, a]. In other words,

$$
\mathrm{S}=\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{a}}
$$

From geometry we know that the surface area of a right circular cone of radius \mathbf{r} and height \mathbf{h} (excluding the circular base of the cone) is $\pi r \sqrt{\boldsymbol{r}^{2}+\boldsymbol{h}^{2}}$.

Notice that the radius of the cone on $[0 . B]$ is $\mathbf{r}=\mathbf{f}(\mathbf{b})=\mathbf{c b}$, and its height is \mathbf{b}. This gives us:

$$
S_{b}=\pi r \sqrt{r^{2}+h^{2}}=\pi(c b) \sqrt{(c b)^{2}+b^{2}}=\pi b^{2} c \sqrt{c^{2}+1}
$$

We get similar results for S_{a}.

$$
S_{a}=\pi r \sqrt{r^{2}+h^{2}}=\pi(a c) \sqrt{(a c)^{2}+a^{2}}=\pi a^{2} c \sqrt{c^{2}+1}
$$

Therefore:

$$
\begin{aligned}
S & =S_{b}-S_{a} \\
& =\pi b^{2} c \sqrt{c^{2}+1}-\pi a^{2} c \sqrt{c^{2}+1} \\
& =\boldsymbol{\pi} \boldsymbol{c} \sqrt{\boldsymbol{c}^{2}+\mathbf{1}}\left(\boldsymbol{b}^{2}+\boldsymbol{a}^{2}\right)
\end{aligned}
$$

In addition notice that the line segment from $(a, f(a))$ to $(b, f(b))$ has length of:

$$
l=\sqrt{(b-a)^{2}+(b c-a c)^{2}}=(\boldsymbol{b}-\boldsymbol{a}) \sqrt{\boldsymbol{c}^{2}+\mathbf{1}}
$$

Using this we can rewrite the formula for S.

$$
\begin{aligned}
S & =\pi c \sqrt{c^{2}+1}\left(b^{2}-a^{2}\right) \\
& =\pi c \sqrt{c^{2}+1}(b-a)(b+a) \\
& =\pi(b c+a c)(b-a) \sqrt{c^{2}+1} \\
& =\pi[f(b)+f(a)] l
\end{aligned}
$$

The Surface Area of the Frustum generated by revolving the line segment between two points, ($\mathrm{a}, \mathrm{f}(\mathrm{a})$) and (b, $f(b)$) about the x-axis is given by:

$$
S=\pi l[f(b)+f(a)]
$$

Using the formula above, we can now derive the general area for a surface of revolution. Let's rotate the curve $y=f(x), a \leq x \leq b$ about the x - axis, where f is positive and has a continuous derivative. We subdivide the interval $[\mathrm{a}, \mathrm{b}]$ into n subintervals of equal length: $\Delta x=\frac{b-a}{n}$. Let the endpoints be $x_{0}=a, x_{1}, x_{2}, \ldots x_{n}=b$. The $i^{t h}$ subinterval $\left[x_{i-1}, x_{i}\right]$ has a line segment between the two points $\left(x_{i-1}, f\left(x_{i-1}\right)\right)$ and $\left(x_{i}, f\left(x_{i}\right)\right)$. Note that the change in $y_{i}, \Delta y_{i}=f\left(x_{i}\right)-f\left(x_{i-1}\right)$

The surface area $S_{i}=\pi\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}}$
Using the ideas from previous sections, the area S of the entire surface of revolution is approximately the sum of each S_{i} where $i=1,2, \ldots n$

$$
S=\sum_{i=1}^{n} S_{i}
$$

After using the Mean Value Theorem and as $\mathrm{n} \rightarrow \infty$ and $\Delta \mathrm{x} \rightarrow 0$, we obtain the following:

Area of a Surface of Revolution:

Let f be a nonnegative function with a continuous first derivative on the interval [a, b]. The area of the surface generated whe the graph of f on the interval $[a, b]$ is revolved about the x-axis is:

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+(f(x))^{2}} d x
$$

Example: The graph of $f(x)=2 \sqrt{x}$ on the interval [1,3] is revolved about the x-axis. What is the area of the surface generated?

$$
f^{\prime}(x)=\frac{1}{\sqrt{x}}
$$

The surface area formula is:

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+(f(x))^{2}} d x
$$

$$
\begin{gathered}
S=\int_{1}^{3} 2 \pi \cdot 2 \sqrt{x} \sqrt{1+\left(\frac{1}{\sqrt{x}}\right)^{2}} d x=4 \pi \int_{1}^{3} \sqrt{x} \cdot \sqrt{1+\frac{1}{x}} d x=4 \pi \int_{1}^{3} \sqrt{x} \cdot \sqrt{\frac{x+1}{x}} d x \\
=4 \pi \int_{1}^{3} \sqrt{\frac{x^{2}+x}{x}} d x=4 \pi \int_{1}^{3} \sqrt{x+1} d x
\end{gathered}
$$

Use \mathbf{u} - substitution: let $\mathbf{u}=\mathrm{x}+1$ then $\mathrm{du}=\mathrm{dx}$. When $\mathrm{x}=1 \rightarrow \mathbf{u}=2$, and when $\mathrm{x}=3 \rightarrow \mathbf{u}=4$

$$
=4 \pi \int_{2}^{4} \sqrt{u} d u=4 \pi\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{2}^{4}=\frac{8 \pi}{3}\left[4^{\frac{3}{2}}-2^{\frac{3}{2}}\right]=\frac{8 \pi}{3}[8-\sqrt{8}] \approx 43.33 \overline{3}
$$

With Leibniz notation, the formula becomes:

$$
S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

If the curve $x=g(y)$ on the interval [$c, d]$ is revolved about the $y-a x i s$, the area of the surface is

$$
S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Example: Find the area of the surface generated when the given curve is revolved about the \mathbf{y} - axis.

$$
y=(3 x)^{\frac{1}{3}} \text { on }\left[0, \frac{8}{3}\right]
$$

Since the curve is being revolved about the y - axis we need to rewrite the curve in terms of $\mathbf{x} . \quad x=\frac{y^{3}}{3}$ When $\mathrm{x}=0 \rightarrow y=0$ and when $\mathrm{x}=\frac{8}{3} \rightarrow \mathrm{y}=2$. $\frac{d x}{d y}=y^{2}$. Using the surface area formula we have:

$$
\begin{gathered}
S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y \\
S=\int_{0}^{2} 2 \pi\left(\frac{y^{3}}{3}\right) \sqrt{1+\left(y^{2}\right)^{2}} d y=\frac{2}{3} \pi \int_{0}^{2} y^{3} \sqrt{1+y^{4}} d y
\end{gathered}
$$

Using \mathbf{u} - sub.: let $\mathbf{u}=1+y^{4} \Rightarrow \mathbf{d u}=4 y^{3} \Rightarrow \frac{1}{4} \mathrm{du}=y^{3}$ when $\mathrm{y}=0 \rightarrow u=1$ and when $\mathrm{y}=2 \rightarrow \mathrm{u}=17$

$$
S=\frac{2}{3} \pi \int_{1}^{17} \sqrt{u} \frac{1}{4} d u=\frac{2}{3} \cdot \frac{1}{4} \int_{1}^{17} u^{\frac{1}{2}} d u=\frac{1}{6} \pi\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{1}^{17}=\frac{\pi}{9}\left[17^{\frac{3}{2}}-1^{\frac{3}{2}}\right]=\frac{\pi}{9}[\sqrt{\mathbf{4 9 1 3}}-\mathbf{1}]
$$

From the last section we were given that the arc length is:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

... which is part of the formula for the area of a surface:

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

We rewrite this as:

$$
S=\int_{a}^{b} 2 \pi f(x) d s \text { where } d s=\sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Similarly for the rotation about the y - axis:

$$
S=\int_{a}^{b} 2 \pi g(y) d s \text { where } d s=\sqrt{1+\left[g^{\prime}(y)\right]^{2}}
$$

There formulas can be remembered by think of $2 \boldsymbol{\pi} \boldsymbol{f}(\boldsymbol{x})$ or $\mathbf{2 \pi \boldsymbol { g }}(\boldsymbol{y})$ as the circumference of a circle traced out of the point (x, y). Notice that $f(x)$ and $g(y)$ determine the radii.

Consider the figures below:

(a) Rotation about x-axis: $S=\int 2 \pi y d s$

(b) Rotation about y-axis: $S=\int 2 \pi x d s$

Example: The given curve is rotated about the y - axis. Find the area of the surface. $x=\sqrt{a^{2}-y^{2}}$, $0 \leq y \leq \frac{a}{2} \quad \frac{d x}{d y}=\frac{1}{2}\left(a^{2}-y^{2}\right)^{-\frac{1}{2}} \cdot(-2 y)=\frac{-y}{\sqrt{a^{2}-y^{2}}}$ (No problem for the specified domain.)

$$
\begin{gathered}
S=\int_{0}^{\frac{a}{2}} 2 \pi \sqrt{a^{2}-y^{2}} \cdot \sqrt{1+\left[\frac{-y}{\sqrt{a^{2}-y^{2}}}\right]^{2}} d y=2 \pi \int_{0}^{\frac{a}{2}} \sqrt{a^{2}-y^{2}} \cdot \sqrt{1+\frac{y^{2}}{a^{2}-y^{2}}} d y \\
=2 \pi \int_{0}^{\frac{a}{2}} \sqrt{a^{2}-y^{2}} \cdot \sqrt{\frac{a^{2}-y^{2}+y^{2}}{a^{2}-y^{2}}} d y=2 \pi \int_{0}^{\frac{a}{2}} \sqrt{a^{2}-y^{2}} \cdot \sqrt{\frac{a^{2}}{a^{2}-y^{2}} d y} \\
=2 \pi \int_{0}^{\frac{a}{2}} a d y=2 \pi[a y]_{0}^{\frac{a}{2}}=2 \pi\left[a \cdot \frac{a}{2}-0\right]=\boldsymbol{a}^{2} \boldsymbol{\pi}
\end{gathered}
$$

